Designed System

Dry Mass: 4.85 kg Propellant Mass: 12.15 kg Thrust: 13 *mN*

Propellant Feed System x1

SETS Prop. Feed System Mass: 1.1 kg Size: $145 \times 127 \times 118 \, mm$ Mass Flow rate: 0 - 3.5mg/s

Propellant Tank x1

ARDE 4898

Tank Volume: 8.28 L Tank Mass: 2.77 kg Pressure Range: 0 - 16 MPaTemp Range: $0 - 60^{\circ}$ C

Thruster x1

BHT-200 Mass: 0.98 kg Power: 200 *W* Thrust: 13 mN ISP: 1390 *s* Propellant Type: Xenon

Ø.500 X 0.095 WALL--

[2]

[3]

Plume Characteristics

Neutral Density (m^{-3})

Anode Flow: 0.897 mg/sCathode Flow: 0.135 *mg/s*

Main Beam lons (m^{-3})

Exit Velocity: 13.6 *km/s*

Total Ion Density (m^{-3})

- Shows some depositing behind thrust
- Minimal amounts

Figure 1: Particle Density of Plume.

PROPULS SPACE ENVIR

Astronautics Senior Desi Austin Atteberry, Justin Karch, Just

T3 ORBITAL

FLOWSAT

1st iteration: Thruster Vector Parallel to SAR

Figure 2: Total Flux and Sputtering rate due to thruster.

Figure 3: Transport factor* to optical payloads, ext.

Table 1: External Outgassing Species Analysis*

Parameter	Name	Value
Total Absorption	Payload instruments	140654
Total Desorption	All surfaces	1.18434e + 07
Transport Factor	PMWR Reflector	0.0117694
Transport Factor	PMWR Sensor 1	1.85758 <i>e</i> – 05
Transport Factor	PMWR Sensor 2	1.63805 <i>e</i> – 05
Transport Factor	MSI	7.18546 <i>e</i> – 05

[ON &	N& Aerospace Engineering		Atomic Oxygen Erosion number density _{700 km} : $n_{AO} = 4.22 \times 10^7 \frac{atoms}{2}$ [4]			
JINNEN IS		Tab	Table 3. AO Parameters and Calculations			
tin Self & MacKenzie Sm	nits		Parameter	Kapton	Z-93 White Paint	
vstem		RAM Area	$A\left[m^2 ight]$	0.29	1.14	
	Total flux	Density [3]	$\rho \left[\frac{g}{cm^3}\right]$	1.45	1.5	
	1.0e+017	AO Velocity	$v \left[\frac{km}{s} \right]$	7.5	7.5	
	3.16e+016 1.e+016	Erosion Yield [1, 4]	$E\left[\frac{cm^3}{AO \ atom}\right]$	3 e — 24	0.4 <i>e</i> – 24	
	3.16e+015 1.e+015	Erosion Rate [1]	$\frac{dx}{dt} = nvE$	$0.071 \frac{mm}{yr}$	$0.0095 \frac{mm}{yr}$	
	3.16e+014	Erosion Depth [1]	$d = \frac{dx}{dt}t$	0.355 <i>mm</i>	0.047 mm	
	3.16e+013	Mass Loss [1]	$\mathrm{d}m = \rho A \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t$	149.2 <i>g</i>	20.58 <i>g</i>	
Thrust Vector X	1 e + 012 3.16e + 012 Sputtering Rate (atoms/sec/m2) 1.00e + 013 3.16e + 012	Mission time, the thickness paint will last greater than t (~ 0.127 mm) RAM direction	<i>t</i> , is 5 years. Ero of the Z-93 on the mission lifetime he thickness of a . This will result in However, the s	sion depth of Z ne radiator (0.1 . Erosion depth single Kapton I in a loss of 3 N spacecraft ther	2-93 is less than L27 mm) so the of Kapton is 3x ayer on the MLI ILI layers in the mal system was	

modelled to keep the bus at $9^{\circ}C$. Further analysis is required, but it is assumed that the **temperature will remain nominal** despite AO degradation.

Table 4. PNCF For Components Seen in RAM Direction				
Part	PNCF			
Radiator	96.09%			
Sensors	95.51%			
Star Trackers	99.97%			
Comm Antenna	99.93%			
Prop System	99.76%			
Solar Panels (side in RAM)	99.58			
Solar Panels (top in RAM)	89.56%			

The maximum particle diameter that can be withstood by an aluminum monolithic shield is given by: [5]

Where t = shield thickness, k = damage parameter, $BHN = Brinell hardness number, \rho_t = target density,$ ρ_p = particle density, v = particle velocity, θ = impact angle, and C_t = speed of sound in target. This requires that a monolithic shield to be 1.02 cm thick to protect from 2 mm diameter particles in the **RAM direction.** Shielding in every other direction is not needed, because the PNP only increases as you move away from the RAM face.

The radiator acts as a Whipple shield, which will protect against 3.4 mm diameter particles. No additional shielding is needed behind the radiator.

Final Iteration: Thrust Vector Perpendicular to SAR

3.16e+011

1.e+011

3.16e+010

1.e+010

3.16e+009

1.e+009

3.16e+008

Figure 4: Interior Outgassing Species Analysis*

Table 2: Interior Outgassing Species Analysis*					
Parameter	Name	Value			
otal Absorption	Payload internals	6.39865 <i>e</i> + 06			
otal Desorption	All internal surfaces	6.84659 <i>e</i> + 06			
ransport Factor	MSI	0.138232			

*Monte Carlo ray tracing analysis using Molflow+

MMOD and Shielding

Probability of no penetration [6]: $PNP = e^{-FAt}$

 $PNP_{tot} = 95.12\%$, $PNP_{tot_{sp,normal,ram}} = 92.1\%$ Where F = 2 mm particle flux and A = RAM area

$$d_{c} = \left(\frac{t}{k} \frac{BHN^{0.25} \left(\frac{\rho_{p}}{\rho_{t}}\right)^{0.5}}{5.24 \left(\frac{v \cos\theta}{C_{t}}\right)^{2}}\right)^{\frac{10}{19}}$$