

Figure 1. Two-dimensional model for SAR shadowing

Figure 2. Day (red): 64 min; Eclipse (blue): 35 min

Model Assumptions

- 1. Circular orbit
- 2. Sun vector always normal to equator
- 3. 2D analysis for shading, sun angles, etc. (see Fig. 1)
- 4. Solar array only sees earth, sun (no partial blocking by bus structure or SAR)
- 5. SAR boom only sees earth, sun (no partial blocking by bus structure or solar array)
- 6. Bus fully covered in MLI (except for radiators)
- 7. Design for worst-case internal and external head loads
- 8. Spacecraft internals kept at constant 9.39 °C
- 9. Isothermal surfaces [6]

10. Conduction is primary heat transfer mode within s/c

Model Inputs

- Incident solar flux: $1366 W/m^2$
- Earth IR flux: 239 W/m^2 [4]
- Earth bond albedo: 0.31 [4]
- Earth average temperature: 255 K [4]
- SAR top: Z93 white paint ($\epsilon = 0.85, \alpha = 0.15$)
- SAR bottom: polished aluminum ($\epsilon = 0.05 \alpha = 0.10$)
- Solar array sun side: $\epsilon_{EOL} = 0.85$, $\alpha_{EOL} = 0.66$
- Solar array anti-sun: Z93 paint ($\epsilon = 0.9, \alpha = 0.15$)
- View factor: differential disk to sphere [5]:

$$F_{1-2} = \left(\frac{r}{h}\right)^2 \cos\theta$$

Where θ is the angle between the spacecraft (disk) normal and the center of the earth

Table 1. Thermal Qualifications °C [7]

Mode	S/C internal	MSI	PMWR	SAR (int)	EPS
Qualification	-10, 50	-20, 50	-15, 50	-20, 80	-10, 50
Acceptance	-5,45	-15, 45	-10, 45	-15, 75	-5, 45
Operations	0,40	-10, 40	-5,40	-10,70	0,40

Astronautics Senior Design 2023-2024 Travis Bouck, Steven Karpov, Justin Self & MacKenzie Smits

Thermal Environment

Figure 4. SAR Thermal Circuit

T3 ORBITAL

FLOWSAT

THERMAL CONTROL Engineering

Figure 5. \dot{Q}_{in} on Solar Arrays and SAR by sun and anti-sun faces

 $\sum \dot{Q}_{solar} + \sum \dot{Q}_{albedo} + \sum \dot{Q}_{IR} + \dot{Q}_{elect} = \dot{Q}_{out,rad}$ Assuming isothermal behavior for solar array and SAR panels, $\sum \dot{Q}_{in} = 795W$; and $\dot{Q}_{elect} = 464W$, $\dot{Q}_{rad} = 1260W \rightarrow T_{rad} = 430K, A_{rad} = 2.3m^2$

Figure 7. Effective Emissivity in Blue Compared to S/C Temp

$$\epsilon_{eff} = \left(\frac{1}{\epsilon_{inner}} + \frac{1}{\epsilon_{outer}} - 1 + \frac{2n}{\epsilon_{middle}} - n\right)^{-1} [1]$$

Assuming a constant internal heat flux of 425 W, the absorptivity and emissivity of space materials can be compared and compiled to calculate MLI effective emissivity. The absorptivity is assumed to be that of the outer layer. Realistically, the stitching of the MLI dominates and typically results in an emissivity of 0.025.

$$\epsilon_{calculated} = 7.39e - 04$$

$$\epsilon_{realistic} = 0.025$$

$$\alpha = 0.3$$

thickness = 8.2 mm

$$m_{total} = 2.4 kg$$

 $\epsilon_{outer} = 0.04$ Goldized Kapton Nomex Netting $\epsilon_{spacer} \approx 0$ $\epsilon_{middle} = 0.03$ Aluminized Kapton $\epsilon_{spacer} pprox 0$ Nomex Netting • x18 $\epsilon_{middle} = 0.03$ Aluminized Kapton $\epsilon_{spacer} \approx 0$ Nomex Netting **Reinforced Aluminized** $\epsilon_{inner} = 0.06$ Kapton Laminate

Figure 8. Layers of MLI Colored Based On Material [2, 3]

Radiator

 \dot{Q}_{out}

Z93 White Paint 2024-T81 Aluminum Face Sheet 5056-H39 Aluminum Honeycomb 2024-T81 Aluminum Face Sheet

Simplest Solution: Passive Radiator