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Problem 1

Topocentric Coordinates.
HST TLEs:

1 20580U 90037B 24010.28323428 .00005912 00000-0 29430-3 0 9991
2 20580 28.4707 327.8603 0002613 104.9653 10.4281 15.15476605652889

Predict the look angles (RA/DEC and Az/El) and associated times for SLO (coordi-
nates listed below) on Jan 11.

Here are the look angles from Heaven’s Above:

Date Mag time. E1 Az. Time. El. Az. Time. El Az. Pass type
11 Jan 2.0 18:50:29 10° SW 18:53:58 28° S 18:54:32 27° SSE visible

Discuss the differences.
SLO Coordinates: 35.3540 north 120.3757 west 105.8 m altitude

Solution.

See Appendix A for results and code for Problem 1

Given initial Two Line Elements (TLEs) for the Hubble Space Telescope (HST), look
angles were calculated using a blend of homemade, AERO557 provided, publicly published,
and native MATLAB code. Since the problem statement asked for look angles and times for
January 11, the simulation was modelled to consider visible HST passes between 11 Jan
2024 00:00:00 (local time) to 11 Jan 2024 23:59:59 (local time). Consequently, the HST
orbit was propagated from the epoch date (10 January 2024 06:47:51, UTC) to the mission
start date (11 Jan 08:00:00, UTC).

The initial orbit propagation method was a two-body motion propagator using the
MATLAB 0DE45 ODE solver. Orbital perturbations were not simulated as a condition of
the problem given, which very likely led to errors in look angle predictions, specifically with
respect to time and elevation. Fig. 1 shows the osculating orbit propagated from the TLE
retrieval epoch to mission start time and positions of the HST at each time.

Once the orbit was propagated to the mission start time (00:00:00 Jan 11, site time)
using the two-body propagator, the simulation then used a universal variable propagator at
one-second time intervals. Fig. 2 shows a graphical representation of conditions needed for

viewing the HST on pass visible from SLO. THe conditions are:
e The spacecraft must be illuminated by the sun
e The site must be in darkness
o Spacecraft must be above the horizon (180° < el < 0°)

The first two conditions are plotted against mission time in Fig. 2, with two candidate
time blocks highlighted in black.
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Osculating (no perts) orbit

® Epoch start (Jan 10, 2024, 22:47:51 SLO time)
®  Mission start (Jan 11, 2024, 00:00:00 SLO time)
Mission trajectory (24h; no perts)
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Figure 1: Osculating orbit trajectory (ECI) of HST starting at epoch (TLE retrieval) and
mission start time (00:00:00 11 Jan, 2024; Pacific Standard Time). HST was propagated
until 11 Jan 23:59:59 without perturbations, which led to small errors in elevation, azimuth,
and viewing times. Planet3D visualization code courtesy of Tamas Kis, throughout.
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Figure 2: Graphic representation of viewing conditions from SLO, California. Zero means
the spacecraft is either in eclipse or the site is in daylight. One means the spacecraft is in
the sun or the site is in darkness. No masking is applied, so any viewing elevation > 0 will
be captured. The black boxes highlight HST viewing candidate regions.

After propagating the orbit and computing changing conditions at each time step, the
data was filtered the third condition (spacecraft must be between 0° and 180°). Fig. 3 shows
the elevation and associated times of HST flybys from the local SLO frame. Note that there
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are three candidate flybys on 11 Jan 2024:
a) 17:11 - 17:21 max el: 10.3°
b) 18:50 - 18:57, max el: 23.8°

¢) 20:31 - 20:32, (no max elevation reached)
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Figure 3: Elevation peaks and associated times for HST viewing from SLO on 11 Jan, 2024.
This plot comes from the right-hand side block highlighted in Fig. 3. This means the only
visible passes of HST from the site between 11 Jan (00:00:00 local) and 12 Jan (23:59:59
local) occurred at these times.

Of the three candidates, the second view corresponds closely with the data given by
Heavens-Above (see Fig. 4). Notably, Heavens-Above applies a 10° mask to their view angle
calculations, and ours does not. Thus, View 3 would not show up on H-A datasets. It is
likely that this is why View 1 (max elevation ~ 10°) doesn’t show up on H-A.

The reason our viewing times are off could be due to several reasons. First, orbital
perturbations were not considered in this simulation. Over a time span of 24 hours, the
COEs would have changed due to zonal harmonics, solar radiation pressure, n-body effects,
and atmospheric drag. Secondly, HST could also have performed a thrust maneuver during
the time span after initial TLE retrieval. Thirdly, H-A doesn’t start recording a pass until
the sun is 6° below the horizon (both rising and setting)[1]:

We have a cut-off of -6° sun altitude for our predictions, so that
satellite passes are only predicted when the sky is reasonably dark.
However, these bright satellites can sometimes be seen when the

sun is higher, but this explains why they aren't in the list.

Fourthly, our model does not apply the same 10° masking that H-A does. This would

skew the viewing times. These are all plausible reasons why our simulation does not match
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exactly with the H-A predictions. Figs. 5, 6, 7, and 8 show our simulation results, which

agree reasonably with H-A predictions given in Fig. 4.

Date Mag time. El Az. Time. El Az. Time. El Az. Pass type
11 Jan|2.0|18:50:29|10°|SW|18:53:58|28°|S5|18:54:32|27°|SSE|visible

Figure 4: Given viewing times/angles for HST from Heavens-Above. Note that the Heavens-
Above HST pass algorithm appears to build in a 10° elevation mask, so published passes
begin at 10°.

View 1 View 2 View 3
Start 11-Jan-2024 17:11:35 11-Jan-2024 18:50:53 11-Jan-2024 20:31:08
Peak 11-Jan-2024 17:16:26 11-Jan-2024 18:56:41 11-Jan-2024 20:32:04
Stop 11-Jan-2024 17:21:18 11-Jan-2024 18:57:02 11-Jan-2024 20:32:04

Figure 5: Of the three visible passes, View 2 matches Heavens-Above data shown in Fig. 4.
This is likely due to the 10° elevation mask, which would remove View 1 and View 3. The
times are similar, but not exact. This is likely due to perturbational effects, not considered
in this model.

View 1 View 2 View 3
Start az [degqg] 208.661795516048 236.701274199645 253.922750831431
Peak az [deg] 157.092014219895 168.413783014575 250.947287773236
Stop az [deg] 105.596469629532 159.966604786374 250.947287773236

Figure 6: Azimuths for three calculated HST viewing times from SLO between 11 Jan and
12 Jan, 2024.

View 1 View 2 View 3
Start az direction {"SSW'} {'SW"' } {'WSW"'}
Peak az direction {"SSE"} {'s" } {"WSW"'}
Stop az direction {'ESE"} {'"SSE"'} {"WSW"'}

Figure 7: Compass directions for three calculated HST viewing times from SLO between 11
Jan and 12 Jan, 2024. Note that View 2 agrees with the H-A data given in Fig. 4.
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View 1 View 2 View 3
Start el [deg] 0.0359222620314736 0.0456622012614463 0.0480099784863766
Peak el [deg] 10.3357511324859 23.8335804788815 3.45902152009376
Stop el [deg] 0.0178591802397283 23.5284460587052 3.45902152009376

Figure 8: Predicted elevation for visible HST passes as seen from SLO from 11 Jan to 12
Jan, 2024. Note that our predictions do not include elevation masking, as H-A does (see Fig.
4). Max elevations are also slightly off, likely due to perturbational effects (not considered
in this model).

Problem 2

Gauss, Extended Gauss, and Double-R methods for angles-only initial orbit
determination.
Calculate the position and velocity vectors from the double-r method and Gauss’
method (non-extended and extended) for topocentric angles only observations.

In addition, compare the resulting COEs from the state vectors as well. Discuss
the differences and thoughts on each of the methods. Please note, in the future, the
Gauss method is always run with the extension. Finally, pick what TLE object might

be close for this object (assume no perturbations) and just compare the COES.

Observation RA (degs) DEC (degs) Date (UT) Time (UT)
1 30.381 23.525 03-25-2013 03:10:30.032
2 65.134 0.774 03-25-2013 03:15:20.612
3 99.976 -30.44 03-25-2013 03:20:32.777

Observations are taken at Cal Poly Observatory:
35.30 north, 120.66 west, 105.8 m altitude

TLE options:
1 256230 99004C 13109.04882318 -.00000094 00000-0 -16690-3 0 1204
2 25623 051.9974 067.7982 0012092 184.1231 215.4516 11.86494224651645

1 25165U 98008D 13083.14572197 -.00000211 00000-0 -12941-2 0 4434
2 25165 052.0160 303.6990 0005433 319.9573 182.6276 12.12023409691559

1 25946U 99058D 13104.16396495 -.00000071 00000-0 19175-3 0 939
2 25946 051.9981 329.5396 0000986 149.5293 353.4996 12.46940793622716

Solution.

See Appendix B for results and code for Problem 2

Position and velocity vectors for the middle of three observations were determined using

a home-built function called gauss.m allowing users to choose between Gauss and Gauss
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Extended methods. These methods were compared with the Double-R angles-only method.
Tabulated results are shown in Fig. 9. Fig. 10 gives the associated Common Orbital
Elements (COEs) from each method.

Gauss’ technique using angles-only data is said to work best when the angular separation
between observations is less than 60°, but it is shown to perform remarkably well for data
separated by 10° or less [2]. In this analysis, the Gauss method (not extended) produced the
least accurate (when compared to the Double-R method) results of the three methods uti-
lized. Both Gauss and Gauss extended models utilized the Gibbs initial orbit determination
algorithm before iterative processing (if using extended).

The Double r-iteration method is a combination of numerical and dynamical techniques
proposed by Escobal (1965) and is more robust than the Gauss method. This method,
according to [2], can handle observations that are days apart. This method still utilizes
the familiar #,, (transfer method) variable (+1) for the short way, (—1) for the long way
(retrograde) transfer trajectory. The initial guess is important in this method. In our case,

this method produced the most accurate results, shown in Figs. 9 - 10.

Gauss

Gauss Extended

Double-R

r2x [km] -840.054378084¢647 -823.006650676095 -823.007283505782
r2y [km] 7070.6739188924 7107.45724373507 7107.45587829911
r2z [km] 3698.23881177458 3698.78651819708 3698.78649786563
v2x [km/s] -5.28758213855778 -5.29401099273387 -5.29400816978208
v2y [km/s] 1.79781989089623 1.80435321941347 1.80435266589727
v2z [km/s] -4.64317551818809 -4.65391220082394 -4.65390969069674

Figure 9: Position and velocity vectors obtained from three IOD angles-only methods.

Gauss

Gauss Extended

Double-R

h [km2/s]

inc [deg]

RAAN [deg]

ecc

omega [deg]

True anomaly [deg]

Semi-major axis [km]

Period [s]

58274.1435320561
52.0008016878705
300.715297695514

.0618157954365597

144.505649267153
359.697400920804
8552.18734293876
7870.94776097365

58604.7693607567
51.9239527750232
300.495990828433
0.0697770403678169
144.798820240989
359.513483519477
8658.61243071461
8018.32531132595

58604.7304178864
51.9239576964323
300.495997043193
0.0697757707427007
144.798765881347
359.513535001091
8658.59938178775
8018.30718535567

Figure 10: COEs obtained from the state vectors obtained by the three IOD angles-only
methods.

After computing state vectors and COEs from each method, the next step is to compare
the given TLEs with the calculated ones. Relative errors (absolute value of the differences)
were plotted and a heatmap generated to compare the two datasets, using the Double-R
method as the calculation of choice (see Fig. 11. At first glance, it appears that C is
the winner, since there is less error overall. However, it is important to note that all three
inclinations (A, B, C) are very close to the calculated values. Thus, it is expected that RAAN

will be close also. It is clear from Figs. 11 and 12 that both inclination and RAAN agree
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reasonably. The eccentricity calculation, although verified against the three IOD methods,
did not agree with any of the TLE data. However, all calculation methods and given TLEs
give eccentricities near zero.

Since the calculated orbit is very close to circular, any error in argument of perigee may
be ignored since w is inaccurate for highly circular orbits. Furthermore, a is calculated using
apogee and perigee radii, and thus a circular orbit will further confound any semi major axis
calculations. Period is nearly the same. Revs per day are very close. Thus, TLE B seems
to be the correct TLE.

0.0920423035677018
3.2030029568067
0.0692324707427007
175.158534118653
7.92379852949584e-05
538.563868872739
0.204541699405458

0.0741423035677045
29.0436029568067
0.0696771707427007
4.73053411865337
0.000123195970735956
803.148351942793
0.30259708129297

Err: inc [deg] 0.0734423035677025
Err: RAAN [deg] 2B 78 ONICHIOASTINE
Err: ecc 0.0685665707427007
Err: omega [degq] 39.3243341186534
Err: n-bar [rev/day] 7.92379852949584e-05
Err: Semi-major axis [km] 538.563868812739
Err: Period [h] 0.204541699405458

Figure 11: Difference (error) calculations between the provided TLEs and the calculated
TLEs based on the Double-R method with colorscale for heatmap error (green for low error,
orange and red for high error values).

inc [deg]
RAAN [deqg]
ecc

omega [deg]

n-bar [rev/day]
Semi-major axis [km]
Period [h]

TLE B: 25165

Double-R

52.016

303.699
0.0005433
319.9573
12.12023409
8120.03551291501
2.02276585208223

51.9239576964323
300.495997043193

.0697757707427007

144.798765881347

10.775341727715
8658.59938178775
2.227730755148769

Figure 12: Comparison between the Double-r iteration calculation and the most likely TLE
candidate. Note that inc and RAAN are very close, as is expected. Eccentricity is off, but
both are very circular. Semi major axis and argument of perigee values are off, but not
surprisingly, due to the circularity of the orbit.
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Problem 3

Lambert’s Problem Solutions Comparison.

Using universal variable method, Gauss’ method, Izzo/Gooding method, and minimum
energy, find and compare the velocity vectors for the orbit give two positions, a differ-
ence in time, and going the short way around. Please compare the COES as well as

the vectors. Discuss why the answers vary.

15,945.34 (That) (km)
12,214.83899 (Ihat) + 10,249.46731 (Jhat) (km)
tm = short way

deltat = 76.0 mins

r0 vect

rl vect

Solution.

See Appendix C for results and code for Problem 3

Four methods for solving Lambert’s problem were employed for the initial orbit deter-
mination for two position vectors (given in ECI) and a time between the two observations.
No simplifying assumptions were made, since these vectors lie in a plane (no z term). The
universal variable, Gauss, and minimum energy algorithms were a blend of homemade and
AERO557-provided functions, while the Izzo-Gooding function was retrieved from MATLAB
Central. All calculations were validated against Vallado’s Example 7.5 (third edition). Re-

sults are shown in Figs. 13 - 16.

Why the differences?

As in Problem 2, the Gauss method is useful when angular separation is less than 10°,
and especially when the extended mode is used. The initial position vectors have an angular
separation of Av = 40°. This is one reason why the Gauss method is not as accurate as the
other methods.

The Universal Variable and Izzo-Gooding methods performed nearly identically; at least
to the third decimal (sometimes the fourth) in velocities and very close in the COEs. Ac-
cording to [2], numerical analysis indicates that the universal-variable and Battin approaches
[not studied here] provide the most accurate answer. The Izzo-Gooding method, a relatively
new method, claims robustness and accuracy with two algorithms in one code. In this study
we assumed a zero-rev solution; both position vectors were obtained in a single pass.

Finally, the minimum energy approach was used to determine not only the velocity
vectors (using a Lambert’s solver inside the function after computing the minimum energy
state), but also the minimum energy semi major axis and minimum energy transfer time,
At,,, between the two position vectors. This minimum energy transfer time was compared
with the parabolic solution (non-elliptical) and the transfer time is given in Figs. 15 and
16. Note that the minimum energy transfer time is slightly lower (75.67 minutes) than the

given transfer time (76 minutes); this is a coincidence.
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Figure 13: Solution to Lambert’s problem for the two given position vectors. Since the
trajectory crashes into earth, any number of speculative ideas may be made about the
origin and nature of the observed object. This trajectory is confirmed using the four IOD
methods and is validated against the example in [2].

*** Gauss Method
V0 (Gauss Method) is: 3.5705 km/s
V1l (Gauss Method) is: 3.5705 km/s

*** Universal Variable Method
V0 (Universal Variable Method) is: 3.5696 km/s
V1 (Universal Variable Method) is: 3.5696 km/s

*** Tzzo—-Gooding Method

VO (Izzo-Gooding Method) is: 3.5696 km/s
V1l (Izzo-Gooding Method) is: 3.5696 km/s
**4 Minimum Energy Method

VO (Minimum Energy Method) is: 3.5695 km/s
V1l (Minimum Energy Method) is: 3.5695 km/s

Figure 14: Speeds obtained from the four IOD methods explored

Finally, the COEs were compared. All methods agreed fairly reasonalby (Gauss being the
worst), and all gave 0° inclinations and unsolvable RAAN and argument of perigee values.
For an equatorial planar orbit, 2 and w are indeed unsolvable, since no node line exists

between two parallel planes.
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Gauss Method

Universal Variable

Izzo-Gooding Method

Minimum Energy Method

vOx [km/s] 2.05994333876808
vOoy [km/s] 2.91633934210809
v0z [km/s] 0

Trajectory Time, h 76

vlix [km/s] -3.4525924722187
vly [km/s] 0.909941481474434
vliz [km/s] 0

2.05888373419334
2.91598259490204
0

76
-3.45155388135579
0.910347262312584

2.05891074466021
2.91596375936091
0

76
-3.45156246532114
0.910315471457215
0

Figure 15: Velocity vectors associated with the two known position

four IOD methods

Gauss Method

Universal Variable

Izzo-Gooding Method

2.047738185098226
2.92401986811616
0
75.6708777398771
-3.44790918737414
0.923897438948356
0

vectors obtained from

Minimum Energy Method

46496.3339097953
0

NaN
0.702201150091742
NaN
10699.5677438606

46496.0335706879
0

NaN
0.702205826390994
NaN
10699.5681389674

46624.4909638674
0

NaN
0.700202980087835
NaN
10699.4838536717

Figure 16: COEs obtained from the four IOD methods

h [km2/s] 46502.0223652899
inc [deg] 0
raan [degqg] NaN
ecc 0.702175159721244
w [deg] NaN
a [km] 10701.4153631316
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